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S1 Data description

This research is based on a dataset with a temporally detailed description of the social network of
(anonymized) Skype users. It covers the history of users adopting Skype from September 2003 until
March 2011 (2738 days), including registration events and contact network evolution for every registered
users in Skype 1 all around the world. For each user, the dataset provides the following details:

• Date and country of registration.

• Time-stamped events of link additions.

In the Skype network, when a user adds a friend to the contact list, the friend may confirm the
contact invitation or not. Thus, links are added by means of the following events: contact addition and
contact confirmation. In our study we capture trusted social links by retaining confirmed edges only,
i.e. edges where both parties have acknowledged the connection. Failure to do so would lead to a mix of
undesired and desired connections.

For our investigations we select user accounts with identified countries of registration and consider all
confirmed connections between users. To receive the best estimation of node degrees in the underlying
social network, we integrate the evolving Skype network for the whole available period and count the
number of confirmed relationships per node, including international ties as well.

The adoption dynamics of a given country may be directly observed by assigning times of adoption
(ta) and termination (tt) for all accounts. They are respectively defined as the dates of registration and
last activity in Skype. Explicitly, we identify an account as terminated if its last activity happened earlier
than one year prior to the end of the observation period. In this way we built the complete adoption
and termination history of the Skype product for 2373 days.

S2 Empirical measures of spreading parameters

As discussed in the main text, we are able to estimate some of the model parameters directly from the
empirical data. In what follows we describe in detail the definitions and limitations of the measurements
for pa, pp, p(n) and p−, and shortly discuss the matching of the time scales of the real and model
dynamics.

S2.1 Average number of social ties

Online social networks have the common limitation that, even while uncovering several characteristics
of the real social graph underneath, they can only map a subset of the existing social relationships. This
is simply because not everyone is registered to a given online service and thus not all social contacts are
recorded. However, one may make the assumption that the online network, although only a sample of the
real social graph, serves as a good proxy for the structure of society. This approximation is more reliable
in technologically-advanced countries where the usage of online social services and communications is
high, since the online sample is more representative.

We follow this line of thought and aggregate the evolving online social network of Skype between users
of the same country for the whole available 7.5 years. In this way we receive a static aggregated structure
as the best approximation of the actual social structure. Then we consider all international connections

linking country users to accounts in any other nation, and finally estimate 〈̃k〉 as the average number of
friends of a given individual, or ego. The observed ego networks are still incomplete, meaning that the

estimated degree is bounded by its real value of the underlying social network, 〈̃k〉 ≤ 〈k〉. Even though
this estimation process induces certain bias in the measurement (further discussed in section S2.3), its

precision increases with larger values of 〈̃k〉.
1At the end of 2010 Skype had more than 663 million registered accounts, as reported in [1].
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S2.2 Probability of spontaneous adoption

The probability of spontaneous adoption pa can be estimated directly from the data without any bias.
The only things we need to know is when someone registered to Skype and whether such user was the
first to adopt among his/her friends, independently of the degree of the user. Thus the probability of
spontaneous adoption per unit time can be measured as,

pa(t) =
#ad(t+ ∆t|SF = 0)

I −Na(t)
, (S1)

where #ad(t+∆t|SF = 0) is the number of users who adopted Skype during the period [t, t+∆t], under
the condition that none of their (later emerging) neighbors adopted before them. At each time step, this
count is normalized by the total number of people who are not using Skype, i.e. the difference between
the number of internet users I in a given country and the number of users at time t, Na(t). By looking at
the time evolution of pa(t) (orange curve in Fig. 2B, main text), it is clear that after an initial transient
period this probability saturates and fluctuates around a constant value p̃a. Such value is the estimated
average probability of spontaneous adoption in the interval ∆t, which may then be used for the model
calculations.

Even if the obtained rate approaches a constant for some countries, the observation time in the
dataset is not sufficient to get the empirical estimate p̃a in all cases. For consistency in our study, then,
we leave pa as a free model parameter to be fitted. From the 34 countries studied, only 11 show a
sufficiently fast adoption process such that pa(t) reaches a stationary value. A list of these countries is
shown in Table S1, and the matter of an empirically vs. freely determined pa parameter is discussed in
section S4.

S2.3 Probability of peer-pressure adoption

Unfortunately, we cannot follow the same strategy in order to estimate the probability for peer-pressure
adoption pp. One could calculate a quantity analogous to that of Eq. (S1),

pp(t) =
#ad(t+ ∆t|SF 6= 0)

I −Na(t)
, (S2)

where #ad(t + ∆t|SF 6= 0) is the number of adoption events per unit time, such that each adopting
individual has at least one (or more) user neighbors at the moment of adoption. However, this quantity
depends on the degree (ki) and number of user friends (Ni) of any adopter i, and is thus driven by
strong nonlinear network effects and node heterogeneity. This nonlinear behavior is evidenced by the
time evolution of pp(t) (brown line in Fig. 2B, main text), where the calculated probability increases in
time instead of saturating to a constant.

A more appropriate way to quantify the effect of peer-pressure starts by measuring ni = Ni/ki, the
fraction of user friends of each node i at the time of adoption. However, in the integrated Skype graph
we can only measure an effective degree k̃i (≤ ki) and thus an effective fraction ñi = Ni/k̃i (≥ ni). Even
as an approximation, this quantity can still show the qualitative effect of peer pressure in the likelihood
of adoption.

With the value of ñi for all nodes in the integrated network, we can calculate the average conditional
probability that a user adopts Skype given that an effective fraction ñ of his/her neighbours has already
joined the network,

p(ñ) =
#ad(ñ)

N −
∑m<ñ
m=0 #ad(m)

, (S3)

where the numerator is the number of users with a fraction ñ of Skype friends at the time of adoption.
The denominator is the number of people with a larger or equal fraction m ≥ ñ, i.e. all individuals
who had the chance to adopt Skype while having a fraction ñ of user neighbours. This count must
exclude those people who have already adopted Skype due to weaker social pressure. Since we cannot
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Figure S1. Probability of adoption driven by social influence. Conditional probability of adoption
as a function of the effective fraction ñ of user neighbors. Panel (A) depicts p(ñ, k̃), the conditional

probability for nodes of given effective degree k̃, while panel (B) shows the similar measure prand(ñ)
coming from a random reference system where the times of adoptions are shuffled. Panel (C) depicts the

difference ∆p(ñ, k̃) = p(ñ, k̃)− prand(ñ, k̃) calculated for each degree.

see the entire social network (only the part uncovered by the Skype graph), this probability must take
the extreme value p(ñ) = 1 at ñ = 1 and is thus increasingly biased as ñ → 1. To see the real effect
of peer pressure on the probability of adoption p(ñ), we need to remove the effect of this bias. To this
end, we define a random reference model where the termination time is set to infinity and shuffle the
adoption times of all accounts. This null model is similarly biased by the effective quantities, but does
not include the effects of social influence. Additionally, the null model conserves the adoption rates
and keeps the social structure unchanged. In consequence, the empirical and null model values of the
probability p(ñ) differ only in the presence or absence of social influence, and thus their difference should
quantify correctly the strength of social pressure and its effect on the probability of service adoption.

In Fig. S1A we show p(ñ, k̃), the conditional probability of adoption for nodes with given effective

degree k̃. Since ñ depends on k̃ this probability takes discrete values, which is apparent for very small
degrees. Similar effects can be observed in Fig. S1B, where the corresponding curves prand(ñ, k̃) for the

null model are shown for nodes of different degrees. The difference ∆p(ñ, k̃) = p(ñ, k̃) − prand(ñ, k̃) in
Fig. S1C shows that the effect of peer pressure increases linearly with the fraction of adopter neighbours,
a rather robust behaviour in terms of degree. The slope of the linear regime may give an estimate p̃p for
the value of the probability of peer pressure adoption; however since we only use effective degrees in this
calculation, the estimate is actually an upper limit for the real value, pp ≤ p̃p. The linear scaling breaks
down around ñ ∼ 0.8, a value after which the peer pressure effect decreases radically. Several hypothesis
can be introduced to explain this behaviour based on the individualist behaviour of an ego or on his or
her reluctance to accept novel technologies, but these discussions are beyond the scope of the present
study.

S2.4 Probability of termination

As discussed in the main text, in our model the agents may terminate Skype usage in two different ways:
either temporarily and going back into state S, or permanently going into state R, each with respective
probability ps and pr. In the former case agents may eventually readopt and enter state A again, while
in the latter they are removed and stay in state R till the end of the process. Based on the empirical
information provided by our dataset, we are not able to directly differentiate between temporary and
permanent termination (since Skype accounts are not tied to uniquely identified individuals, who might
or might not have multiple accounts) and thus measure the two probabilities independently. Instead we
may measure the probability of overall termination,

p−(t) =
#tr(t+ ∆t)

Na(t)
, (S4)
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where #tr(t+∆t) is the number of terminating users in the interval [t, t+∆t], out of Na(t) possible users.
Similarly to pa(t), the probability p−(t) is not biased by the incomplete social structure, and reaches a

constant value p̃− after an initial transient period (blue line in Fig. 2D, main text). This behaviour also
holds for the decoupled probabilities of spontaneous and peer-pressure termination,

p−a (t) =
#tr(t+ ∆t, TF = 0)

Na(t)
and p−p (t) =

#tr(t+ ∆t, TF 6= 0)

Na(t)
, (S5)

where TF is the number of terminated friends of the ego at the time of his/her own termination.
Unlike in the case of adoption, both of these probabilities evolve towards a steady state, suggesting that
termination is not driven by non-linear mechanisms and can be characterized by a constant rate. Note

that by measuring p̃− and using its definition in the model (see Eq.S8), we may estimate the parameter
ps (or equivalently pr) with the value,

p̃s =
p̃− − pr
1− pr

. (S6)

Consequently, a steady termination process allows us to reduce the number of free parameters in the
model by one.

S2.5 Time scales

In order to match the time scales of the empirical and modelled rate sequences (seen in Fig. 2A of the
main text), we let the time unit of the real process unchanged but introduce a constant q = Nint/Npop
to rescale the model time as t′ = qt. Here Nint and Npop are the number of internet users and the
population of a given country, respectively. Their ratio captures the average societal impact due to a
digitally enabled sub-population that modulates the adoption of online products. Since we only rescale
the model time while keeping the empirical sequences unchanged, this rescaling does not affect the time
scale of the real adoption curves. As a result, the fits and model predictions are obtained in real time as
well, independently of q. However, note that in order to correctly estimate model parameters from the
data, we need to rescale their values as p′∗(t

′) = qp∗(t) (where p∗ denotes either pa or p−).

S3 Model

To simulate and predict the evolution of Skype adoption, we first need to synthesize the observed mech-
anisms into simple probabilistic rules, and then integrate them into a process modelling the interactions
of a large number of individuals. We assume the existence of an underlying social network with arbitrary
correlations and slow temporal evolution, in which individuals may choose to become users of the Skype
product and give rise to an evolving account network. Our aim is to describe the temporal evolution of
the account network with a suitable agent-based model. Under this approach we assume that individuals
may start using Skype either by

(a) adopting the product spontaneously, or by

(b) adopting the product due to peer pressure,

and terminate their use of the product either by

(c) stopping usage temporarily with a chance of re-adoption, or by

(d) stopping usage permanently.
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S3.1 Model description

For a static social network G of size N and characterized by the adjacency matrix A = {aij}, the
probability p+i (t) that individual i becomes a user at time t is given by,

p+i (t) = pa + pp(1− pa)ni(t), ni(t) =
Ni(t)

ki
, (S7)

where pa ∈ [0, 1] is the probability of spontaneously adopting the product, pp ∈ [0, 1] is the probability to
be affected by peer pressure, Ni(t) is the number of neighbours of i that at time t have already adopted
the product, and ki =

∑
j aij its degree. Since the density of product users in the neighbourhood of i is

ni(t), the time-dependent probability of adopting the product due to peer pressure is pp(1− pa)ni(t). A
peer pressure effect depending on the fraction of adopter neighbours rather than on their total number
is reminiscent of other models of social activity, such as Watts’ threshold model on global cascades [2].

Furthermore, the probability p−i (t) that individual i stops being a user at time t is,

p−i (t) = pr + ps(1− pr), (S8)

where pr, ps ∈ [0, 1] are the probabilities of halting usage either permanently or temporarily. Overall,
agents can be classified into sets of susceptible (S), adopting (A) and removed (R) individuals, describing
respectively people who may adopt the product later, are users already, and will never use it again. The
flow S → A is regulated by pa and pp, A→ R by pr, and A→ S by ps.

In the thermodynamic limitN →∞, the process of adoption at the user level can be well characterized
with a master equation formalism. We assume that all agents with the same degree are statistically
equivalent, allowing us to group individuals and write rate equations for each degree class k [3]. We
denote by sk(t), ak(t) and rk(t) the average probabilities that a randomly chosen agent with degree k
is susceptible, adopter and removed, respectively. In the limit of large system size these probabilities
are equal to the densities of susceptible, adopting and removed individuals in the degree class k, so that
sk + ak + rk = 1 ∀ t, k.

Let us denote by ρk the degree distribution of the static social network G, that is, the probability
that a randomly chosen agent has degree k. With it the average probability of an individual belonging
to the sets S, A and R are correspondingly given by

s(t) =
∑
k

ρksk(t), a(t) =
∑
k

ρkak(t), r(t) =
∑
k

ρkrk(t), (S9)

with the normalization condition s+a+ r = 1 ∀ t. Our task is to find rate equations for the probabilities
sk, ak and rk that correspond to the dynamics set by Eqs. (S7) and (S8), solve them and average over the
distribution ρk to get the time dependence of the probabilities s, a and r in Eq. (S9), so as to describe
the evolution of the account network at a global level.

Through a simple first-order moment closure method, the rate equation for ak can be written as
dak/dt = 〈p+i 〉sk − 〈p

−
i 〉ak. In other words, the average probability that an adopting agent with degree

k becomes either removed or susceptible is 〈p−i 〉ak = [pr + ps(1 − pr)]ak, while the average probability
that a susceptible individual in the degree class k adopts the product is 〈p+i 〉sk = [pa + pp(1− pa)na]sk,
where na(t) = 〈ni(t)〉 is the average probability that the neighbour of a susceptible agent has adopted
already. This approximation ignores higher moments of the dynamical quantities sk, ak and rk, as well
as any correlations between them. In the presence of degree-degree correlations in G,

na =
∑
k′

k′ − 1

k′
ρk′,kak′ , (S10)
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with ρk′,k the conditional probability that an edge departing from an agent with degree k arrives at an
agent with degree k′ [3]. We can write similar equations for sk and rk to arrive at the system,

dak
dt

= [pa + pp(1− pa)na]sk − [pr + ps(1− pr)]ak (S11)

dsk
dt

= −[pa + pp(1− pa)na]sk + ps(1− pr)ak (S12)

drk
dt

= prak (S13)

that forms a system of non-linear ordinary differential equations determining the adoption dynamics at
the degree class level.

S3.2 Uncorrelated random networks

In order to progress further we need to simplify Eqs. (S11)-(S13) by making additional assumptions
about the average probability na. If the social network G is considered as an uncorrelated random
network, the conditional probability ρk′,k does not depend on k any more and it takes the simple form
ρk′,k = k′ρk′/〈k〉, where 〈k〉 =

∑
k kρk is the average degree in G. By substituting it into Eq. (S10) we

obtain,

na =
1

〈k〉
∑
k

(k − 1)ρkak. (S14)

Since the sum in na goes through all values of k, Eqs. (S11)-(S13) for all degree classes will be identical
apart from initial conditions. In our case it is relevant to consider s0k = 1 and a0k = r0k = 0 ∀ k, which
further simplifies the dynamics and gives ak = a ∀ k, that is, na = a(〈k〉 − 1)/〈k〉.

Moreover, since ρk is not a function of t, we can take an average by using Eq. (S9) and write,

da

dt
= [pa + ppk(1− pa)a]s− [pr + ps(1− pr)]a (S15)

ds

dt
= −[pa + ppk(1− pa)a]s+ ps(1− pr)a (S16)

now a planar system of non-linear ordinary differential equations that describes the evolution of the
account network at a global level, where we have redefined the peer-pressure influence as the effective
probability,

ppk =
〈k〉 − 1

〈k〉
pp. (S17)

For large values of 〈k〉, the effect of the social network’s degree is minimal and ppk ∼ pp.

The non-linear system in Eqs. (S15)-(S16) can be approached qualitatively by a linear stability
analysis. The 0-clines of the system (i.e. the curves at which da/dt and ds/dt are respectively zero) can
be written as,

sa =
[pr + ps(1− pr)]a
pa + ppk(1− pa)a

, ss =
ps(1− pr)a

pa + ppk(1− pa)a
, (S18)

so that sa − ss = pra/[pa + ppk(1 − pa)a], and for pr 6= 0 the only fixed point of the dynamics is
(a∞, s∞) = (0, 0). Fig. S2A shows the flow of the system (S15)-(S16) and the 0-clines according to
Eq. (S18).

By denoting da/dt = fa(a, s) and ds/dt = fs(a, s), the dynamics near the fixed point is determined
by the Jacobian matrix,

J(a, s) =

(
dfa/da dfa/ds
dfs/da dfs/ds

)
=

(
ppk(1− pa)s− pr − ps(1− pr) pa + ppk(1− pa)a
−ppk(1− pa)s+ ps(1− pr) −pa − ppk(1− pa)a

)
, (S19)
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Figure S2. Numerical solution of the model process. (A) Phase portrait of the dynamics set by
Eqs. (S15)-(S16). The arrows represent the flow of the dynamical system, symbols show the 0-clines
sa (O) and ss (/), and the dashed line is the upper limit for the allowed phase space (a, s) according
to the condition s + a + r = 1. The continuous line is an example trajectory with initial condition
(a0, s0) = (0, 1) and parameters pa = 0.001, pp = 0.05, ps = 0.005, pr = 0.01 and 〈k〉 = 2. (B) Time
evolution of the rates of adoption (Ra), termination (Rt) and net change (Rn = Ra − Rt) for the same
set of parameters.

i.e. (da/dt, ds/dt) = J(0, 0)(a, s) for (a, s) ∼ (0, 0), and the stability of the fixed point is given by the
eigenvalues λ± of J(0, 0),

0 =

∣∣∣∣−pr − ps(1− pr)− λ± pa
ps(1− pr) −pa − λ±

∣∣∣∣ =⇒ λ± =
1

2

(
τ ±

√
τ2 − 4∆

)
, (S20)

where τ = −[pa + pr + ps(1 − pr)] < 0 and ∆ = papr > 0, as long as pa, pr, ps 6= 0. Since τ < 0 and
τ2 − 4∆ > 0 the fixed point is a stable node, meaning that (a∞, s∞) is indeed the final state of the
dynamics and attracts all trajectories of the phase space. Fig. S2A shows an example trajectory starting
from (a0, s0) = (0, 1) for given parameter values, progressively approaching the fixed point.

Finally we consider the rates at which individuals adopt the product [Ra(t)] and stop using it [Rt(t)],
as well as the rate of effective or net change Rn(t) = Ra(t)−Rt(t), since they can be directly compared
with the empirical data. By construction these are equal to the gain and loss terms in the rate equation
for a, that is,

Ra(t) = [pa + ppk(1− pa)a]s, Rt(t) = [pr + ps(1− pr)]a. (S21)

A numerical evaluation of the rates Ra(t), Rt(t) and Rn(t) for given parameter values is shown in
Fig. S2B.

S3.3 Numerical simulations

To verify our theoretical considerations we can implement the previous agent-based model and compare
the solutions of Eq. (S21) with large-scale numerical simulations on synthetic network structures. The
Skype network is strongly heterogeneous and presents a power-law like degree distribution as many other
social networks. To get a similar structure for our numerical simulations we implement the Barabási-
Albert model [3] and generate scale-free (SF) networks with a similar exponent, uncorrelated degrees
and scalable average degree. We use this topology as a model for the background social network and on
the top of it we perform the process defined by Eqs. (S7)-(S8).
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(A) the rate of adoption Ra(t) (green), (B) the rate of termination Rt(t) (blue), and (C) the rate of net
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Figure S4. Numerical simulations of the adoption process on SF networks with different sizes. We
use networks with size N = 103 (2), 104 (◦), 105 (4) and average degree 〈k〉 = 32. We show (A) the
rate of adoption Ra(t) (green), (B) the rate of termination Rt(t) (blue), and (C) the rate of net change
Rn(t) (red). Symbols indicate averages of numerical simulations, while solid lines are curves derived
from Eq. (S21) with the same parameter values as in Fig. S3.

During our theoretical considerations we have taken a mean-field approach that provides better
accuracy if N →∞ and the average degree 〈k〉 of the background network is large. The validity of such
approximation (and the correctness of our solution) can be verified by comparing the characteristic rates
calculated from averages of large-scale simulations to the rates provided by Eq. (S21), while using the
same parameter values. In Fig. S3 we show numerical simulations for synthetic networks with different
average degrees, averaged over 100 realizations of the adoption process. As 〈k〉 increases the discrepancy
between the theoretical and simulated rates reduces considerably, until finally in the limit of large 〈k〉
the fit between both rates is very accurate, validating our theoretical solution of the model.

The solution given in Eq. (S21) suggests no system size dependence of the normalized characteristic
rates. This can be confirmed by simulations where only the size N of the static network is varied. The
averages of 100 realizations shown in Fig. S4 indicate that even if in smaller networks the simulated rates
have larger deviation, their averages overlap with the theoretical curve.

S3.4 Spreading scenarios

A careful selection of parameter values allows us to simulate various spreading scenarios. Simply by
setting pr = 0 we can reduce our model into a SIS-like dynamics [3] where a non-trivial equilibrium state
appears. This is shown in Fig. S5A, where the system always ends up in a state with equal adoption
and termination rates. It is also reflected by the cumulative sum giving the number of active nodes
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Figure S5. Numerical simulations and theoretical prediction of adoption processes. Processes were
run with parameters pa = 0.001, pp = 0.05, ps = 0.005 and N = 105, respectively for pr = 0 (top)
and pr = 0.005 (bottom). Simulations are averaged over 100 realizations. On the left panels we show
the rate of adoption Ra(t) (green), the rate of termination Rt(t) (blue) and the rate of net change
Rn(t) = Ra(t)−Rt(t) (red). On the right panels the corresponding cumulative functions are presented.
Solid lines denote the associated theoretical curves. Shaded regions depict different regimes bounded by
the characteristic times τ0 = 0, τ = max(Rn(t)) and τ2 = Rn(t = 0+), as well as τ3 → ∞ (top) and
τ3 = Rn(t = 0−) (bottom).

(red curve in Fig. S5B), which remains constant in the equilibrium state. The number of active users in
equilibrium depends on the relative values of the adoption and termination probabilities. The evolution
of the adoption process can be separated into three distinct regimes: In the initial regime from time
τ0 = 0 until τ = max(Rn(t)) (dark-shaded region), the adoption spreads with an increasing speed and
reaches the largest possible number of users. In the second regime from τ until τ2 = Rn(t = 0+) (light-
shaded regime), the adoption spreading slows down as it becomes controlled by an increasing termination
rate. In the third regime from τ2 until τ3 → ∞ (white region) the systems stays in equilibrium, which
means no change in the account network size since the same number of users adopt and terminate in
each time step.

A different scenario takes place if we allow agents to enter a removed state (see Fig. S5C). In this case
the spreading process always reaches a trivial final state where no susceptible nodes remain and no more
adoption can happen in the network. Its evolution can also be divided in three typical regimes, of which
the first two are similar to the previous scenario. However, as in here termination to a removed state is
also possible, the third regime spanning from τ2 until τ3 = Rn(t = 0−) (white region) starts at a crossover
point when termination becomes dominant, the adoption network starts to reduce and approaches the
trivial final state. The same scenario can be followed in Fig. S5D where τ and τ2 correspond respectively
to the first inflection point and to the maximum of the curve measuring the total number of active users
(red line).
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S3.5 Non-trivial equilibrium states

The planar system in Eqs. (S15)-(S16) has a single fixed point (0, 0) for nonzero pr, meaning that the
dynamics always ends up in a state where all individuals are removed and will never use the product
again. A different spreading scenario can be obtained by setting pr = 0, which leads to a non-trivial
equilibrium state where the rates of adoption and termination are different from zero. Indeed, for r = 0
and a+ s = 1 ∀ t the 0-clines of Eq. (S18) become equal,

sa = ss =
psa

pa + ppk(1− pa)a
, (S22)

and the final state (a∞, s∞) can be found by inserting Eq. (S22) in the normalization condition s∞ =
1− a∞. The resulting quadratic equation gives,

a∞± =
1

2ppk(1− pa)

[
ppk(1− pa)− pa − ps ±

√
[ppk(1− pa)− pa − ps]2 + 4pappk(1− pa)

]
. (S23)

Since 4pappk(1 − pa) > 0 for pa, ppk 6= 0, we have a∞− < 0 and the stationary probability of adoption
can only be a∞ = a∞+ 6= 0. Moreover, the condition da/dt = 0 defining the final state implies that the
stationary rates of adoption and termination are equal to an equilibrium rate R∞ = psa

∞, which after
some algebra can be written as,

R∞ =
ps
2

1− pa + ps
ppk(1− pa)

+

√[
1− pa + ps

ppk(1− pa)

]2
+

4pa
ppk(1− pa)

 . (S24)

The condition pr = 0 simplifies the system (S15)-(S16) into the single autonomous equation da/dt =
[pa+ppk(1−pa)a](1−a)−psa. After integrating directly and rearranging terms with the help of Eq. (S23)
we obtain,

a(t) = a∞+
et/τc − 1

et/τc − a∞+ /a∞−
, (S25)

where we have defined a characteristic time τc = 1/
√

[ppk(1− pa)− pa − ps]2 + 4pappk(1− pa). The
explicit solution in Eq. (S25) can be used to derive analytical expressions for the temporal evolution
of the rates Ra and Rt of Eq. (S21), which in turn lead to expressions of important moments in the
dynamics like the times ta and tn, defined respectively as the times when the rates Ra and Rn = Ra−Rt
are maximal. Explicitly,

ta = τc ln

(
a∞+
a∞−
· −ps − 1/τc
−ps + 1/τc

)
and tn = τc ln

(
−ppk(1− pa)− pa − ps + 1/τc
ppk(1− pa)− pa − ps − 1/τc

)
. (S26)

Since da/dt is autonomous, we can also find the maximal rates of adoption and net change (R∗a =
Ra(ta) and R∗n = Rn(tn)) through a quicker route. The condition 0 = dRa/dt|t=ta implies 2a(ta) =
1− pa/[ppk(1− pa)], so we can substitute in the left side of Eq. (S21) and write,

R∗a =
pa
4

(
1 +

pa
ppk(1− pa)

)(
1 +

ppk(1− pa)

pa

)
. (S27)

Similarly, for the net rate we have 2a(tn) = 1− (pa + ps)/[ppk(1− pa)] and,

R∗n =
1

4

(
1 +

pa + ps
ppk(1− pa)

)
[pa + ppk(1− pa)− ps]−

ps
2

(
1− pa + ps

ppk(1− pa)

)
. (S28)

Eqs. (S24), (S27) and (S28) define a non-linear algebraic system between the rates {R∞, R∗a, R∗n}
and the parameters {pa, ppk, ps}, one that may be used to solve the inverse problem of determining
appropriate parameters in terms of measured rates. The resulting parameters and their errors give in
this way estimated areas for the time evolution of the rates in the system.
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Figure S6. Comparison between model predictions. Predictions obtained by fits with three (x-axis) and
two (y-axis) free parameters are shown for the 11 different countries where p̃a is empirically determinable.
Symbols depict (a) rates of adoption Ra(t) (green) and (b) rates of termination Rt(t) (blue) averaged
over the last six months of the observation period, with their corresponding standard deviations as error
bars (smaller than symbols). In-symbol letters are country abbreviations, r is an arbitrary linear scaling
constant, and the dashed line is a linear function with unit slope.

S4 Empirical fits

To obtain the best model fit of the empirical rates we apply a bounded non-linear least square method and
fit the binned Ra(t), Rt(t), and Rn(t) curves simultaneously. As discussed in the main text, the model

is determined by the parameter set {pa, pp, pr, p̃s, 〈̃k〉}. There we present fitting results where {p̃s, 〈̃k〉}
are always estimated from the data and {pa, pp, pr} are considered as free parameters. However, in
some countries the data allows for the empirical determination of p̃a as well. Out of the 34 investigated
countries, we could estimate this parameter empirically for 11 countries and perform the fitting with the

parameter set {p̃a, pp, pr, p̃s, 〈̃k〉} of two free (pp, pr) and three fixed (p̃a, p̃s, 〈̃k〉) parameters.

S4.1 Two vs. three free parameter fits

In Fig. S6 we compare the predicted modelled rates obtained by fitting the empirical rates with either two
or three free parameters. Although some differences appear between the two results, in most countries
the corresponding symbols collapse in a line with unit slope and thus assign excellent agreement between
the predicted rates. This implies that even fits with three free parameters provide good predictions about
the asymptotic evolution of the adoption process.

S4.2 Goodness of fits

To quantify the quality of the obtained empirical fits we performed the following analysis. The model
fit is calculated over the first 5 years of the data, so that the end of the training period is always fixed.
In contrast the beginning of the training period may slightly vary from country to country, depending
on the length of the initial transient state. Consequently, a comparable fit quality measure is calculated
as follows: The model rates are fitted over the curves rea, ret and ren, each a group of 10 (or less) binned
empirical values of Ra(t), Rt(t) and Rn(t), respectively. We then derive the triplet,

r∗ =

(
re∗ − rm∗
max(re∗)

)2

, (S29)

where ∗ ∈ {a, t, n} and rm∗ is the corresponding average model value. Using this triplet we calculate the
combined Residual Sum of Squares (RSS) per point set as,

RSS =

∑n
t=nmin

ra(t) + rt(t) + rn(t)

n− nmin
, (S30)

where n is an index of measure points (max(n) = 10) and nmin is the minimum index of the actual
country measure. The obtained RSS values are summarized in Table S1.
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Abbreviation Country name RSS (3 free parameters) RSS (2 free parameters)

AT Austria 0.030547 0.030640
CH Switzerland 0.089469 0.089468
DK Denmark 0.089758 0.111208
EE Estonia 0.083691 0.084199
FI Finland 0.094170 0.336367
HU Hungary 0.075269 0.378541
IS Iceland 0.091920 0.045883
LV Latvia 0.021787 0.045755
LT Lithuania 0.130222 0.130222
MA Morocco 0.178242 1.058968
NO Norway 0.065166 0.048559

Table S1. List of investigated countries with three or two free parameters fits. The first and second
columns give the country abbreviation codes and names, while the third and forth column includes the
corresponding combined RSS values (defined in section S4) obtained by three and two free parameter
fits respectively.

S4.3 Correlations with liberty measures

As mentioned in the main text, our model of adoption spreading can disclose relevant differences between
the adoption dynamics of countries at various levels of societal and economical development. One charac-
teristic indicator in focus is the average lifetime of accounts in a given country defined as 〈tl〉 = 〈tt− ta〉,
where ta and tt are the corresponding registration and termination times. We relate this empirical mea-
sure to general liberty measures [4] with results shown in the main text and in Fig.S7. We observe that
the weaker the press/political/civil liberty is in a country, the shorter time online accounts are used there.
Such observations indicate a quantifiable dependence between the dynamics of innovation spreading and
the socio-economic status of a country.
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Figure S7. Account life time correlations with liberty measures. Average lifetime 〈tl〉 of accounts as a
function of (a) political and (b) civil liberty measures [4] in various countries (large scores imply weak
liberties). T̄ is an arbitrary linear scaling constants with time dimension.
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